Anger Is More Influential than Joy: Sentiment Correlation in Weibo

نویسندگان

  • Rui Fan
  • Jichang Zhao
  • Yan Chen
  • Ke Xu
چکیده

Recent years have witnessed the tremendous growth of the online social media. In China, Weibo, a Twitter-like service, has attracted more than 500 million users in less than five years. Connected by online social ties, different users might share similar affective states. We find that the correlation of anger among users is significantly higher than that of joy. While the correlation of sadness is surprisingly low. Moreover, there is a stronger sentiment correlation between a pair of users if they share more interactions. And users with larger number of friends possess more significant sentiment correlation with their neighborhoods. Our findings could provide insights for modeling sentiment influence and propagation in online social networks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Easier contagion and weaker ties make anger spread faster than joy in social media

Similar to face-to-face communication in daily life, more and more evidence suggests that human emotion also spread in online social media through virtual interactions. However, the mechanism underlying the emotion contagion, like whether different feelings diffuse unlikely or how the spread is coupled with the social network, is rarely investigated. Indeed, because of the costly expense and sp...

متن کامل

YNU-HPCC at EmoInt-2017: Using a CNN-LSTM Model for Sentiment Intensity Prediction

The sentiment analysis in this task aims to indicate the sentiment intensity of the four emotions (e.g. anger, fear, joy, and sadness) expressed in tweets. Compared to the polarity classification, such intensity prediction can provide more finegrained sentiment analysis. In this paper, we present a system that uses a convolutional neural network with long short-term memory (CNN-LSTM) model to c...

متن کامل

Weibo sentiments and stock return: A time-frequency view

This study provides new insights into the relationships between social media sentiments and the stock market in China. Based on machine learning, we classify microblogs posted on Sina Weibo, a Twitter's variant in China into five detailed sentiments of anger, disgust, fear, joy, and sadness. Using wavelet analysis, we find close positive linkages between sentiments and the stock return, which h...

متن کامل

MoodLens: An Emoticon-Based Sentiment Analysis System for Chinese Tweets in Weibo

Recent years have witnessed the explosive development of online social media. Weibo, a Twitter-like online social network in China, has attracted more than 250 million users in less than three years, with more than 1000 tweets generated in every second. These tweets not only convey the factual information, but also reflect the emotional states of the authors, which are very important for unders...

متن کامل

Emotion Classification of Chinese Microblog Text via Fusion of BoW and eVector Feature Representations

Sentiment Analysis has been a hot research topic in recent years. Emotion classification is more detailed sentiment analysis which cares about more than the polarity of sentiment. In this paper, we present our system of emotion analysis for the Sina Weibo texts on both the document and sentence level, which detects whether a text is sentimental and further decides which emotion classes it conve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014